CSE 114A: Fall 2023

Foundations of Programming
Languages

Intro to Haskell

Owen Arden
UC Santa Cruz

Based on course materials developed by Nadia Polikarpova

What is Haskell?

e A typed, lazy, purely functional programming
language

- Haskell = A-calculus +

e Better syntax

e Types

e Built-in features
- Booleans, numbers, characters
- Records (tuples)
- Lists
- Recursion

Why Haskell?

e Haskell programs tend to be simple and correct
e Quicksort in Haskell

sort [] =[]
sort (x:xs) = sort 1ls ++ [x] ++ sort rs
where
1s =[1] 1«<-xs, 1<=x]
rs =[r | r< xs, x< r]

e Goals for this week
- Understand the above code

- Understand what typed, lazy, and purely
functional means (and why you care)

Haskell vs A-calculus: Programs

e A program is an expression (not a sequence of
statements)

e It evaluates to a value (it does not perform actions)
- A:
(\x -> x) apple -- =~> apple
- Haskell:
(\x -> x) "apple" -- =~> “apple”

Haskell vs A-calculus: Functions

e Functions are first-class values:
- can be passed as arguments to other functions
- can be returned as results from other functions

- can be partially applied (arguments passed one
at a time)

(\x -> (\y ->x (xvy))) (\z ->z+ 1) 0

e BUT: unlike A-calculus, not everything is a function!

Haskell vs A-calculus: top-level bindings

e Like in Elsa, we can name terms to use them later

e Elsa:
let T = \X Yy -> X
let F = \XYy ->Yy
let PAIR = \x y -> \b -> ITE b x y
let FST = \p ->p T

let SND = \p -> p F

eval fst:
FST (PAIR apple orange)
=~> apple

Haskell vs A-calculus: top-level bindings

Like in Elsa, we can name terms to use them later
Haskell:

haskellIsAwesome = True

pair = \x y -> \b -> if b then x else y
fst = \p -> p haskellIsAwesome

snd = \p -> p False

-- In GHCi:
> fst (pair "apple" "orange") -- “apple™

The names are called top-level variables
Their definitions are called top-level bindings

Syntax: Equations and Patterns

e You can define function bindings using equations:

pair x y b = if b then x else y -- pair = \x y b -> ...

fst p = p True -- fst = \p -> ...
snd p = p False --snd = \p -> ..

Syntax: Equations and Patterns

e A single function binding can have multiple
equations with different patterns of parameters:

pair x y True = Xx -- If 3rd arg matches True,
-- use this equation;

y -- Otherwise, 1f 3rd arg matches
-- False, use this equation.

pair x y False

e The first equation whose pattern matches the actual
arguments is chosen

e For now, a pattern is:
- a variable (matches any value)
- or a value (matches only that value)

Syntax: Equations and Patterns

e A single function binding can have multiple
equations with different patterns of parameters:

pair x y True

pair x y False

e Same as:

pair x y True

pair x y b

If 3rd arg matches True,

use this equation;

Otherwise, 1f 3rd arg matches
False, use this equation.

If 3rd arg matches True,
use this equation;
Otherwise use this equation.

10

Syntax: Equations and Patterns

e A single function binding can have multiple
equations with different patterns of parameters:

pair x y True

pair x y False

e Same as:

pair x y True

pair x y _

If 3rd arg matches True,

use this equation;

Otherwise, 1f 3rd arg matches
False, use this equation.

If 3rd arg matches True,
use this equation;
Otherwise use this equation.

11

QUIZ: Pair

Which of the following definitions of pair is incorrect? *

A.pair x y = \b -> if b then x else y

B. pair x = \y b -> if b then x else vy
4
pair x _ True = X
pair _y _ =y
D.
. [
pair x y False =y

E. all of the above

http://tiny.cc/cse116-pair-ind

12

QUIZ: Pair

Which of the following definitions of pair is incorrect? *

A.pair x y = \b -> if b then x else y

B. pair x = \y b -> if b then x else vy l
4

http://tiny.cc/cse116-pair-grp

pair x _ True = X
pair _y _ =y
D.

pair x y b = X

pair x y False

I
<

E. all of the above

13

Equations with guards

e An equation can have multiple guards (Boolean
expressions):

cmpSquare X y > y*y = 'bigger :)"
== y*y = "Same :|"
< y*y = ‘"smaller :("
e Same as:
cmpSquare X y X > y*y = ‘"bigger :)"
X == y*y = "Same :|"
otherwise = "smaller :("

14

Recursion

e Recursion is built-in, so you can write:

sum n = if n == 0
then 0
else n + sum (n - 1)

e Or you can write:

sum © %)
sum n = n + sum (n - 1)

15

Scope of variables

e Top-level variables have global scope

message = if haskellIsAwesome -- this var defined below

then "I love CSE 130"
else "I'm dropping CSE 130”
haskellIsAwesome = True

e Or you can write:
-- What does f compute?

f 0 = True

fn=g(n- 1) -- mutual recursion!
g 0 = False

gn=Ff(n - 1) -- mutual recursion!

e Answer: f is isEven, gis 1s0dd

16

Scope of variables

e |s this allowed?

haskellIsAwesome = True

haskellIsAwesome = False -- changed my mind

e Answer: no, a variable can be defined once per
scope; no mutation!

17

Local variables

e You can introduce a new (local) scope using a 1let-

expression
sum @ = 0
sum n = let n' =n -1
in n + sum n' -- the scope of n'

-- 1s the term after in

o Syntactic sugar for nested 1et-expressions:

sum 0 = 0
sum n = let
n' n - 1

sum' = sum n'

in n + sum
18

Local variables

e If you need a variable whose scope is an equation,
use the where clause instead:

cmpSquare X y X >z = "bigger :)"
X ==z = "same :|"
X <z = "smaller :("

where z = y*y

Types

 What would Elsa say?

let FNORD = ONE ZERO

« Answer: Nothing. When evaluated, it will crunch to
something, but it will be nonsensical.

- A-calculus is untyped.

20

Types

 What would Python say?

def fnord():
return 0(1)

« Answer: Nothing. When evaluated will cause a run-
time error.

- Python is dynamically typed

21

Types

 What would Java say?

void fnord() {
int zero;
zero(1);

}
e Answer: Java compiler will reject this.

- Java is statically typed.

22

Types

e In Haskell every expression either has a type or is ill-
typed and rejected statically (at compile-time,
before execution starts)

- like in Java

- unlike A-calculus or Python

fnord = 1 0

23

Type Annotations

e You can annotate your bindings with their types
using ::, like so:

-- | This is a Boolean:
haskellIsAwesome :: Bool
haskellIsAwesome = True

-- | This is a string
message :: String
message = if haskellIsAwesome
then "I love CMPS 112"
else "I'm dropping CMPS 112”

24

Type Annotations

-- | This is a word-size integer
rating :: Int
rating = if haskellIsAwesome then 10 else ©

-- | This is an arbitrary precision integer
bigNumber :: Integer
bigNumber = factorial 1600

 If you omit annotations, GHC will infer them for you
- Inspect types in GHCi using :t

- You should annotate all top-level bindings anyway!
(Why?)

25

Function Types

« Functions have arrow types

-\x -> ehastype A -> B
- If e has type B, assuming x has type A

e For example:
> :t (\x -> if x then 'a' else 'b")
(\x -> if x then 'a' else 'b') :: Bool -> Char

26

Function Types

e You should annotate your function bindings:

sum :: Int -> Int
sum 0 = 0
sum n = n + sum (n - 1)

e With multiple arguments:

pair :: String -> (String -> (Bool -> String))
pair x y b = if b then x else y

e Same as:

pair :: String -> String -> Bool -> String
pair x y b = if b then x else y

27

QUIZ: Type of Pair

With pair :: String -> String -> Bool -> String, what would GHCi say

>:t pair "apple" "orange"
A. Syntax error
B. The term is ill-typed

C. String

D. Bool -> String

E. String -> String -> Bool -> String

http://tiny.cc/cse116-tpair-ind

28

QUIZ: Type of Pair

With pair :: String -> String -> Bool -> String, what would GHCi say

=

>:t pair "apple" "orange"

A. Syntax error E

-
B. The term is ill-typed b:-

C. String
D. Bool -> String

E. String -> String -> Bool -> String

http://tiny.cc/cse116-tpair-grp

29

Lists

e A listis

- either an empty list

[] -- pronounced "nil"

- or a head element attached to a tail list

X:XS -- pronounced "x cons xs"

30

Terminology: constructors and values

[] -- A list with zero elements
1:11] -- A list with one element: 1
(:) 1 [] -- Same thing: for any infix op,

-- (op) is a regular function!

1:(2:(3:(4:[]))) -- A list with four elements: 1, 2, 3, 4

1:2:3:4:[] -- Same thing (: is right associative)

[1,2,3,4] -- Same thing (syntactic sugar)

31

Lists

« [] and (:) are called the list constructors

e We’ve seen constructors before:

- True and False are Bool constructors

- 0, 1, 2 are... well, it’s complicated, but you can
think of them as Int constructors

- these constructions didn’t take any parameters, so
we just called them values

e In general, a value is a constructor applied to other
values (e.g., list values on previous slide)

32

Type of a list

o A list has type [A] if each one of its elements has
type A

o Examples:
myList :: [Int]
myList = [1,2,3,4]

myList' :: [Char] -- or :: String
myList' = ['h', 'e', "1', '"1', "0o'] -- or = "hello"

myList'' = [1, ‘h'] -- Type error: elements have
-- different types!

myList [t] -- Generic: works for any type t!
myList'"'' = []

Functions on lists: range

-- | List of integers from n upto m
upto :: Int -> Int -> [Int]
upto n m

| n>m =[]

| otherwise = n : (upto (n + 1) m)

e There is also syntactic sugar for this!

[1..7] -- [1,2,3,4,5,6,7]
[1,3..7] -- [1,3,5,7]

34

Functions on lists: length

-- | Length of the 1list
length :: ???
length xs

|
v
v
v

35

Pattern matching on lists

length :: [Int] -> Int
length [] = 0
length (_:xs) = 1 + length xs

. e ait] ablefinct— !
e A patternis

- either a variable (incl.)

- or a constructor applied to other patterns

e Pattern matching attempts to match values against

patterns and, if desired, bind variables to successful

matches. 36

QUIZ: Patterns

Which of the following is not a pattern? *

(O A.(1:xs)

O B.(_:_:_)
O C. [x]
(O D.[1+2,x,y]

(O E. all of the above

http://tiny.cc/csel116-pattern-ind

37

http://tiny.cc/cse116-pattern-ind

QUIZ: Patterns (wrong url)

Which of the following is not a pattern? *

(O A.(1:xs)

O B.(_:_:_)
O c.Ix
(O D.[1+2,x,y]

(O E. all of the above

http://tiny.cc/cse116-pattern-grp

38

Some useful library functions

-- | Is the list empty?

:: [t] -> Bool

-- | Head of the 1list

o [t] > t -- careful: partial function!

-- | Tail of the 1list

tail ::

[t] -> [t] -- careful: partial function!

-- | Length of the list

length ::

-- | Append two lists
(++) ::

[t] -> Int

You can search for library

functions (by type!) at
[t] -> [t] -> [t] hoogle.haskell.org

Are two lists equal?

- |
(==) ::

[t] -> [t] -> Bool

39

http://hoogle.haskell.org

Pairs

myPair :: (String, Int) -- pair of String and Int
myPair = ("apple", 3)

 (,) is the pair constructor

-- Field access using library functions:
whichFruit = fst myPair -- "apple”
howMany = snd myPair -- 3

-- Field access using pattern matching:
isEmpty (x, y) =

You can use pattern
matching not only

T-Esaﬁe ds.) in equations, but
1sEmpty = also in A-bindings

and 1et-bindings!
-- same as:

isEmpty p

Pattern matching with pairs

 Is this pattern matching correct? What does this
function do?
f :: String -> [(String, Int)] -> Int
f _[1 =¢9
f x ((k,v) : ps)
| x == = Vv
| otherwise = f x ps

41

Pattern matching with pairs

o Is this pattern matching correct? What does this
function do?

f :: String -> [(String, Int)] -> Int

T[] =0
f x ((k,v) : ps)
| x == = Vv

| otherwise = f x ps

e Answer: a list of pairs represents key-value pairs in a
dictionary; f performs lookup by key

42

Tuples

e Can we implement triples like in A-calculus?

e Sure! But Haskell has native support for n-tuples:

myPair :: (String, Int)
myPair = ("apple"”, 3)

myTriple :: (Bool, Int, [Int])
myTriple = (True, 1, [1,2,3])

my4tuple :: (Float, Float, Float, Float)
my4tuple = (pi, sin pi, cos pi, sqrt 2)

-- And also:
myUnit 20 ()
myUnit = ()

List comprehensions

e A convenient way to construct lists from other lists:

[toUpper ¢ | ¢ <- s] -- Convert string s to upper case

[(i:j) | 1 <- [1"3]J
j <- [1..i]] -- Multiple generators

[(i,3) | 1 <- [0..5]
j <- [0..5],
i+ j == 5]

J

-- Guards

Quicksort in Haskell

sort [] =[]
sort (x:xs) = sort 1ls ++ [x] ++ sort rs
where
1s =[1] 1<-xs, 1<=x]
rs =[r | r<- xs, r>x]

45

What is Haskell?

e Atyped, lazy, purely functional programming
language

46

Haskell is statically typed

e Every expression either has a type, or is ill-typed
and rejected at compile time

e Why is this good?
- catches errors early

- types are contracts (you don’t have to handle ill-
typed inputs!)

- enables compiler optimizations

47

Haskell is purely functional

 Functional = functions are first-class values
 Pure = a program is an expression that evaluates to a value

- No side effects! unlike in Python, Java, etc:
public int f(int x) {

calls++; // side effect!
System.out.println(“calling f"); // side effect!
launchMissile(); // side effect!
return x * 2;

}

- in Haskell, a function of type 1nt -> Int computes a single

integer output from a single integer input and

does nothing else
48

Haskell is purely functional

e Referential transparency: The same expression
always evaluates to the same value

- More precisely: In a scope where x1, ..., xn are
defined, all occurrences of e with
FV(e) = {x1, ..., xn} have the same value

e Why is this good?
- easier to reason about (remember x++ vs ++x in C?)

- enables compiler optimizations

- especially great for parallelization (el + e2: we can

always compute el and e2 in parallel!) .0

Haskell is lazy

e An expression is evaluated only when its result is

needed

e Example: take 2 [1

take
=> take
=> take
=> 1: (take
=> 1: (take
=> 1:2:(take

=> 1:2:]]

O P Kk MNMNDNMNDN

(upto
(upto
(1:(upto
(upto
(2:(upto
(upto

w W NN N BB

.. (factorial 100)]

(factorial 100))

933262154439..
933262154439..
933262154439..
933262154439..
933262154439..

)

) -
) -
) -
) -

def
def
def
def
def

upto
take
upto
take

take 1

50

Haskell is lazy

e Why is this good?

- Can implement cool stuff like infinite lists: [1..]

take n [(i,j) | 1 <- [1..],
j <- [1..1],
ged i § == 1]

- encourages simple, general solutions

- but has its problems too :(

51

That’s all folks!

52

